FINAL LECTURE
Slide count

<table>
<thead>
<tr>
<th>Name</th>
<th>Slides</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angela</td>
<td>2 slides</td>
</tr>
<tr>
<td>Jenny</td>
<td>2 slides</td>
</tr>
<tr>
<td>Nathaniel</td>
<td>2 slides</td>
</tr>
<tr>
<td>Patty</td>
<td>4 slides</td>
</tr>
<tr>
<td>Chunpeng</td>
<td>5 slides</td>
</tr>
<tr>
<td>John</td>
<td>2 slides</td>
</tr>
<tr>
<td>Jeff</td>
<td>2 slides</td>
</tr>
</tbody>
</table>
ANGELA
Bromirski and Gerstoft
Dominant source regions of earth's hum are coastal

- Hum excited by infragravity (IG) waves generated by ocean swells. Primarily by IG waves in deep ocean or over continental shelves?
- Approach
 - 292 TA stations
 - Continuous beamformed vertical-component data
 - Set threshold to reduce earthquake noise
 - \(b(\omega, t, \psi, s) = |p(\omega, \psi, s)^T v(\omega, t)|^2 \)
 - Stacked over frequency and Rayleigh wave slowness -> best-fitting plane wave over azimuth during each segment -> determine hum source
Bromirski and Gerstoft
Dominant source regions of earth's hum are coastal

- West coast of North America hum generation
 - Concentrations at particular azimuths
 associated with seasonal cycle: 220-340º
 North Pacific, 120-210º west coast of South
 America, 50º North Atlantic
- Correlation between swell, IG-waves, and hum
- Global wave model correlation with hum
- Conclusions – Dominant hum generating regions
 are near coasts
JENNY
Virtual seismometers in the subsurface of the Earth from seismic interferometry

Purpose:

Propagating seismic waves limits the resolution of subsurface images because permanent seismometers record seismic energy while being “confined almost exclusively to land based sites.

Proposing that the new approach of using interferometry will allow real time, non invasive, subsurface seismic strain monitoring for areas that are remote from instrumental networks.

Results:

Assumption that the authors’ proposal proved to be true takes place.

“Information that can be obtained from these earthquakes about other such events is consistent with that provided by instrumental seismometers. “

The paper appears to be more of a long explanation of their methods rather than exploration of their findings.
Methods

1. Turn earthquakes into virtual seismometers located beneath the Earth’s surface.
 a) Seismic waves generated by one earthquake lead to transient strain in the subsurface at other locations around the globe.
 b) This strain can be quantified from seismograms.
 c) This provides information on the subsurface strain in regions of the globe that lack instrumental networks.

2. Turn any energy source into a virtual sensor.
 a) Use passive noise form of interferometry over impulsive source.

3. Reconstruction of surface waves.
 a) Thus derive which components of surface was strain are recorded by virtual receivers constructed from canonical normal, thrust and strike slip earthquakes, allowing verification of the method by comparison with directly recorded seismograms in these cases.

4. To make direct comparisons possible, one could construct horizontal strain measurements by computing scaled differences between closely spaced seismometers.

1. Derive estimates of the scaled horizontal strain in a direction in line with the source seismometer path by taking time derivatives of measured seismograms.
 a) $\Im \omega = i c k$ (ω is temporal spatial frequency, k is in-line spatial frequency, c is phase velocity.)
NATHANIEL
Fluid modeling in Chu et al.

- Used Gassmann's relations to derive elastic moduli (and velocity) from concentration of fluid saturated pores
 - Valid only for “very low frequency”
 - Valid? Are we at very low frequency? What is very low frequency?
- Does the volatile content imply an eruption risk?
 - Do we need to make another supervolcano special for Discovery Channel?
The Shape of the Dike

- I think they chose the shape based on where seismicity was absent
- Explains the dogleg in the paper
- Why draw it as blocks instead of curves?

Figure S15. (A) Cross section along profile CD. (B) Synthetic seismograms for teleseismic waves from southeast. Numbers after each waveforms are station locations in (A). See caption of Fig. S13 for details.
PATTY
Is the track of the Yellowstone hotspot driven by a deep mantle plume?
— Review of volcanism, faulting, and uplift in light of new data
Pierce and Morgan

Peiying Patty Lin, ASU
EarthScopeSeminarClass

Figures and information referenced from various internet sources
Seismic tomography (Yuan and Dueker, 2005)

- Warm mantle material inclined to NW from beneath Yellowstone.
- Tomography resolved a Low-velocity mantle plume to a depth of 500-600km.
- At 500km depth, the inferred plume is beneath Dillon.

Yellowstone hotspot is an upper mantle plume (Yuan and Dueker, 2005; Waite et al, 2006)

(Pierce and Morgan, 2009)
Argument- a deep (>500km) mantle plume

Supporting evidences:

(1) Flood basalt volcanism including a northward spreading plume head
(2) Coeval rhyolite volcanism to the south through generally more cratonic crust
(3) A large mass deficit

(Pierce and Morgan, 2009)
Issues need to be clarify

(1) the size of the plume head
(2) the depth of the plume origin
(3) whether or not the lithosphere thickens eastward across the cratonic boundary
(4) plume interaction with the Juan de Fuca slab
(5) 17–10 Ma hotspot migration rates 2.5 times too high for plate motion.
Detailed Deep Mantle Structure Mapping Using Usarray Data

• Chunpeng Zhao
Upper Mantle Discontinuity Topography from Thermal and Chemical Heterogeneity

[Schmerr and Garnero 2007]

- **Data:**
 - 16000 high-quality broadband seismograms densely sampling the mantle beneath South America

- **Method:**
 - Bootstrap stacking of SS precursors which can be used to determine the mantle transition zone thickness

- **Result:**
 - A detailed topography of the 410 and 660 discontinuity beneath SA.
 - Thermal and Chemical Heterogeneity caused by entrainment of water is required to explain the depressed 410 and 660 to the east of the slab
Anticorrelated Seismic Velocity Anomalies from Post-Perovskite in the Lowermost Mantle [Hutko et al. 2008]

- **Data:**
 - 17550 high-quality broadband and short period P waves and a similar dataset of S waves

- **Method:**
 - Deconvolution of source wavelet
 - Double array stacking of P and S wave to amplify the reflected energy after P and S by D'' discontinuity.
 - Scattering migration to model the P wave post cursor.

- **Result:**
 - 1-D P and S velocity model for this small region suggest anticorrelated Vp and Vs discontinuity at 2570 km deep
JOHN
Strainmeters in the EarthScope experiment

Smith and Gomberg (2009), A search in strainmeter data for slow slip associated with triggered and ambient tremor near Parkfield, CA, JGR 114 B00A14

http://pboweb.unavco.org

John D. West, Arizona State University
Question: does slow slip accompany triggered tremor, and can it be detected using PBO strainmeters?

Background: borehole strainmeters in some locations show strain changes with tremor, slow slip, and/or earthquakes.

Slow slip defined as strain changes with clear onset and lasting several to 10’s of days.

Methodology: measure strain signal, subtract out tides, atmospheric pressure & long term drift, look for non-noise signals in the remaining time series, especially signals which correlate between multiple strainmeter locations.

Results: (a) No evidence of slow slip accompanying tremor or induced by teleseismic waves.

(b) There are significant calibration and sensitivity differences between instruments; differences are time varying.

Conclusions: Slow slip may only be detectable if slip is shallow and instrument is located in or very near the slip zone, or if slip is very large (>M5).
Subsurface fault geometries and crustal extension in the eastern Basin and Range Province, western U.S.

- **Purpose**
 - To identify fault geometry & rheological structures in the eastern B&R.
 - Better understand fault mechanisms and seismic hazard.

- **Data Sources**
 - New seismic reflection lines
 - Continuous GPS crustal velocity datasets (inc. PBO network).
 - Surface geology
Subsurface fault geometries and crustal extension in the eastern Basin and Range Province, western U.S.

- **Results:**
 - Regionally extensive low-angle basal detachment beneath entire eastern B&R at 7-10 km depth.
 - Shallower normal faults are high-angle reactivated Sevier structures that coalesce into listric detachment.
 - Lithospheric strain is accommodated by aseismic slip and/or ductile flow along basal detachment.