Raising the Colorado Plateau

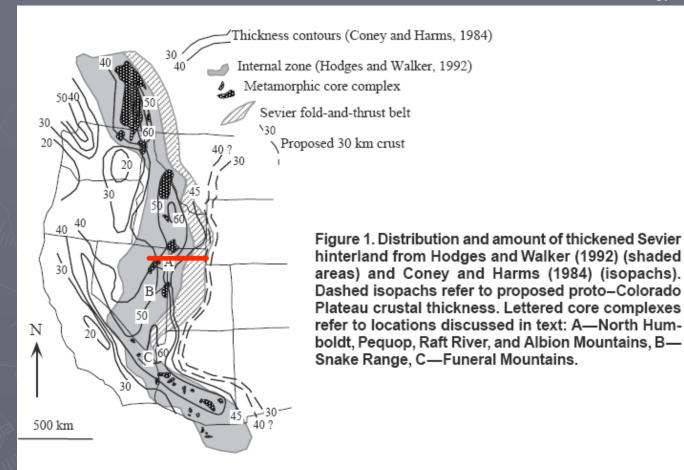
Nadine McQurrie and Clement G. Chase *Geology, Jan. 2000, v.28, no.1, p.91-94*

Chunpeng Zhao April 23, 2007 Earthscope Seminar, ASU

Colorado Plateau

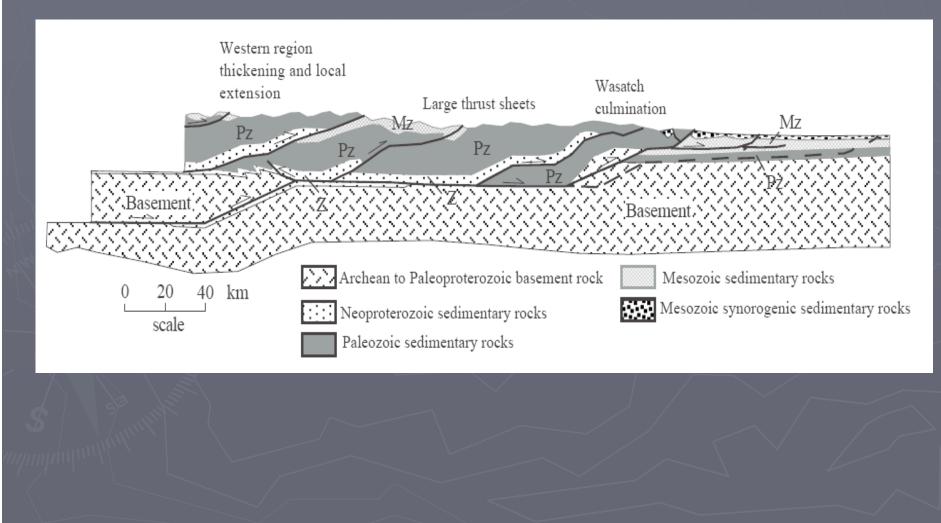
Elevation: ~2km
Crustal thickness: 45km
During much of the Phanerozoic, it is near sea level
In phanerozoic, Colorado Plateau region had a thin crust

Model

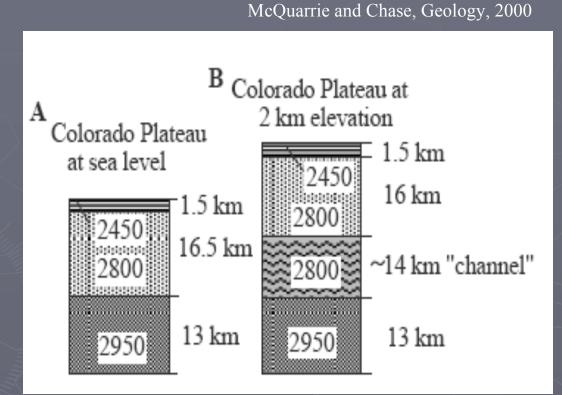

The pressure gradient from an overthickened and overheated hinterland crust of the Sevier orogenic belt drove intracrustal flow that thickened the crust and isostatically raised the Colorado Plateau.

1	Eon	Era	Period. Subperiód		Epoch	Age	Million: of Year
					Holocene		0.01
			Quate	ernary		Late	- 0.01
	Phanerozoic	Cenozolo			Pleistocene	Early	- 0.76
					Pliocene	Late	- 1.8
			Tertlary	Neogene		Early	- 3.6
					Miocene	Late	- 5
						Middle	- 11
						Early	- 16.5
						Late	- 24
				Paleogene	Oligocene	Early	- 28.5
						Late	- 34
					Eocene	Middle	- 37
							- 49
						Early	- 55
					Paleocene	Late	- 61
						Early	- 65
			Creta	ceous	Late		- 97
					Early		- 144
					Late		- 160
		Mesozoic	Jura	assic	Middle		- 180
					Early		- 205
					Late		- 228
			Tria	issic	Middle		- 242
					Early		248
		Paleozoic	Permian		Late		0100000000
					Early		- 256
					Late		- 295
			Pennsy	/Ivanian	Middle		- 304
					Early		- 311
			Mississippian		Late		- 324
					Early		- 340
			Devonian		Late		- 354
					Middle		- 372
					Early		- 391
			Silurian		Late		- 416
							- 422
			Ordovician		Early Late		- 442
					and the second second second		- 458
					Middle		- 470
			Cambrian		Early		- 495
					Late		- 505
					Middle		- 518
			Early				- 544
Precambrian	Proterozoic	Late				- 900	
		Middle					- 1600
		Early	None defined				- 2400
	Archean	Late					- 3000
		Middle					- 3400
		Early					3800

Figure D-1. Divisions of geologic time used to code the database items in this compilation.


Model Test 1: Geological Evidence Paleo-crustal thickness of Western US

McQuarrie and Chase, Geology,2000



Cross section of Sevier fold-and-thrust belt

McQuarrie and Chase, Geology, 2000

Model Test 2: Isostatic Balance

Model Test 3:

Viscosity and Topographic Gradient

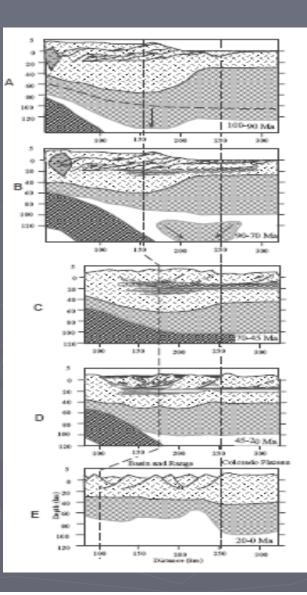
$q = \frac{D^3}{12\mu} \frac{dp}{dx},$	(1)
$\frac{dp}{dx} = \frac{\rho_{\rm mc}g h}{L/2},$	(2)
$q = \frac{hL}{4t}.$	(3)
$\mu = \frac{D^3 \rho_{\rm mc} g t}{3L^2},$	(4)
$\frac{dh}{dx} = \frac{12\mu L}{tD^2 \rho_{\rm mc}g} \frac{(\rho_{\rm m} - \rho_{\rm mc})}{\rho_{\rm mc}}.$	(5)

► Input:

density_crust=2800 kg/m^3 density_mantle=3300 kg/m^3 $g=10 m/s^2$ L=700~1400 km h=4 km D=15 km t=35 m.y.

viscosity = $10^{19} \sim 10^{20} Pa S$

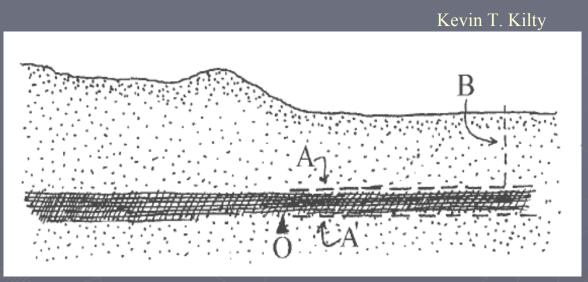
temperature = $600 \sim 700^{\circ}C$


Topographic Slope= $0.1 \sim 0.5^{\circ}$

Range of Elevation = $1 \sim 5$ km

Implications

Changes of foreland-basin geometry. The process should also be applicable to the Rocky Mountain region. Sevier fold-and-thrust belt and Laramide uplifts are different expression of strain produced by same driving mechanism. The uplift and outward growth of the east margin of Tibet may be also caused by same mechanism.


Discussion:

A: Sevier Plateau with a thickened crustal root
B: Removing of Mantle Lid
C: Crustal Flow Propagation
D: Extension
E: Basin and Range, Colorado Plateau

McQuarrie and Chase, Geology, 2000

Comment: by Kevin T. Kilty

- Laramide uplifts as a response of ductile flow should cause the Colorado Plateau to resist gargantuan normal Forces.
- There is no recent uplift following this ductile flow mechanism occurring in the western US.

Reply to the Comment: by Nadine McQuarrie and Clement G. Chase Kilty's calculation of upper crust stresses is inconsistent with the geology of the

- Laramide and Colorado Plateau region.
- The curstal flow process is not limited to the Colorado Plateau.

Additional Thoughts:

If Sevier Plateau is thick and high, it will prevent the sea to cover the Colorado-Plateau region. So, it should have been covered by shallow sea before Sevier Plateau formed. Right?