How Laramide-Age Hydration of North American Lithosphere by the Farallon Slab Controlled Subsequent Activity in the Western United States

Humphreys, Hessler, Dueker, Farmer, Erslev, and Atwater

International Geology Review, 45, 2005

Jeffrey Roth
February 22, 2007
ASU Earthscope Seminar
Motivation: western U.S.
tectonics and magmatic activity
North America: Topography
Observations

Seismic velocity
- ~100 km depth
- low resolution: S-wave model of Grand (1997)
- high resolution: P-wave models

Surface heat flow
- High correlation between datasets

Humphreys et al., 2003
Data & Methods

- Travel time data
- Corrected delays used in tomographic inversion
- Regions of slow wave propagation beneath central New Mexico, Colorado, and Yellowstone
- Regions of fast wave propagation in the east and west, and central Wyoming

Humphreys et al., 2003
Results

Low-velocity volumes:
- Jemez volcanic trend
- West-central Colorado (Rocky Mtns)
Implications

- Flattening slab cools and hydrates lithosphere
- Removal of slab exposes hydrated lithosphere to hot asthenosphere
 - Widespread magmatism
 - Uplift due to decreased density from heating and unloading from slab removal

Humphreys et al., 2003
Additional Thoughts

• Why not continue squeeze tests below 200 km?
• What is the mechanism for Farallon slab flattening and detachment?
• Possible impact of proposed Yellowstone plume impingement ~80Ma?